\(\int x (a+b \arctan (\frac {c}{x}))^3 \, dx\) [149]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 145 \[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\frac {3}{2} i b c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-3 b^2 c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right ) \log \left (2-\frac {2}{1-\frac {i c}{x}}\right )+\frac {3}{2} i b^3 c^2 \operatorname {PolyLog}\left (2,-1+\frac {2}{1-\frac {i c}{x}}\right ) \]

[Out]

3/2*I*b*c^2*(a+b*arccot(x/c))^2+3/2*b*c*x*(a+b*arccot(x/c))^2+1/2*c^2*(a+b*arccot(x/c))^3+1/2*x^2*(a+b*arccot(
x/c))^3-3*b^2*c^2*(a+b*arccot(x/c))*ln(2-2/(1-I*c/x))+3/2*I*b^3*c^2*polylog(2,-1+2/(1-I*c/x))

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4948, 4946, 5038, 5044, 4988, 2497, 5004} \[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=-3 b^2 c^2 \log \left (2-\frac {2}{1-\frac {i c}{x}}\right ) \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )+\frac {3}{2} i b c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {3}{2} i b^3 c^2 \operatorname {PolyLog}\left (2,\frac {2}{1-\frac {i c}{x}}-1\right ) \]

[In]

Int[x*(a + b*ArcTan[c/x])^3,x]

[Out]

((3*I)/2)*b*c^2*(a + b*ArcCot[x/c])^2 + (3*b*c*x*(a + b*ArcCot[x/c])^2)/2 + (c^2*(a + b*ArcCot[x/c])^3)/2 + (x
^2*(a + b*ArcCot[x/c])^3)/2 - 3*b^2*c^2*(a + b*ArcCot[x/c])*Log[2 - 2/(1 - (I*c)/x)] + ((3*I)/2)*b^3*c^2*PolyL
og[2, -1 + 2/(1 - (I*c)/x)]

Rule 2497

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/D[u, x])]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 4946

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTan[c*x^
n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))),
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1]

Rule 4948

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m
+ 1)/n] - 1)*(a + b*ArcTan[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Sim
plify[(m + 1)/n]]

Rule 4988

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTan[c*x])
^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Dist[b*c*(p/d), Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d))
]/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]

Rule 5004

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]

Rule 5038

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/d,
 Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x], x] - Dist[e/(d*f^2), Int[(f*x)^(m + 2)*((a + b*ArcTan[c*x])^p/(d + e*x
^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]

Rule 5044

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(-I)*((a + b*ArcT
an[c*x])^(p + 1)/(b*d*(p + 1))), x] + Dist[I/d, Int[(a + b*ArcTan[c*x])^p/(x*(I + c*x)), x], x] /; FreeQ[{a, b
, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {(a+b \arctan (c x))^3}{x^3} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-\frac {1}{2} (3 b c) \text {Subst}\left (\int \frac {(a+b \arctan (c x))^2}{x^2 \left (1+c^2 x^2\right )} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-\frac {1}{2} (3 b c) \text {Subst}\left (\int \frac {(a+b \arctan (c x))^2}{x^2} \, dx,x,\frac {1}{x}\right )+\frac {1}{2} \left (3 b c^3\right ) \text {Subst}\left (\int \frac {(a+b \arctan (c x))^2}{1+c^2 x^2} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-\left (3 b^2 c^2\right ) \text {Subst}\left (\int \frac {a+b \arctan (c x)}{x \left (1+c^2 x^2\right )} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {3}{2} i b c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-\left (3 i b^2 c^2\right ) \text {Subst}\left (\int \frac {a+b \arctan (c x)}{x (i+c x)} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {3}{2} i b c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-3 b^2 c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right ) \log \left (2-\frac {2}{1-\frac {i c}{x}}\right )+\left (3 b^3 c^3\right ) \text {Subst}\left (\int \frac {\log \left (2-\frac {2}{1-i c x}\right )}{1+c^2 x^2} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {3}{2} i b c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {3}{2} b c x \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^2+\frac {1}{2} c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3+\frac {1}{2} x^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right )^3-3 b^2 c^2 \left (a+b \cot ^{-1}\left (\frac {x}{c}\right )\right ) \log \left (2-\frac {2}{1-\frac {i c}{x}}\right )+\frac {3}{2} i b^3 c^2 \operatorname {PolyLog}\left (2,-1+\frac {2}{1-\frac {i c}{x}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.20 \[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\frac {1}{2} \left (3 b^2 \left (b c (i c+x)+a \left (c^2+x^2\right )\right ) \arctan \left (\frac {c}{x}\right )^2+b^3 \left (c^2+x^2\right ) \arctan \left (\frac {c}{x}\right )^3+3 b \arctan \left (\frac {c}{x}\right ) \left (a \left (2 b c x+a \left (c^2+x^2\right )\right )-2 b^2 c^2 \log \left (1-e^{2 i \arctan \left (\frac {c}{x}\right )}\right )\right )+a \left (a x (3 b c+a x)-6 b^2 c^2 \log \left (\frac {c}{\sqrt {1+\frac {c^2}{x^2}} x}\right )\right )+3 i b^3 c^2 \operatorname {PolyLog}\left (2,e^{2 i \arctan \left (\frac {c}{x}\right )}\right )\right ) \]

[In]

Integrate[x*(a + b*ArcTan[c/x])^3,x]

[Out]

(3*b^2*(b*c*(I*c + x) + a*(c^2 + x^2))*ArcTan[c/x]^2 + b^3*(c^2 + x^2)*ArcTan[c/x]^3 + 3*b*ArcTan[c/x]*(a*(2*b
*c*x + a*(c^2 + x^2)) - 2*b^2*c^2*Log[1 - E^((2*I)*ArcTan[c/x])]) + a*(a*x*(3*b*c + a*x) - 6*b^2*c^2*Log[c/(Sq
rt[1 + c^2/x^2]*x)]) + (3*I)*b^3*c^2*PolyLog[2, E^((2*I)*ArcTan[c/x])])/2

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 404 vs. \(2 (131 ) = 262\).

Time = 8.16 (sec) , antiderivative size = 405, normalized size of antiderivative = 2.79

method result size
derivativedivides \(-c^{2} \left (-\frac {a^{3} x^{2}}{2 c^{2}}+b^{3} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{3}}{2 c^{2}}-\frac {3 x \arctan \left (\frac {c}{x}\right )^{2}}{2 c}-\frac {\arctan \left (\frac {c}{x}\right )^{3}}{2}+3 \ln \left (\frac {c}{x}\right ) \arctan \left (\frac {c}{x}\right )-\frac {3 \arctan \left (\frac {c}{x}\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1-\frac {i c}{x}\right )}{2}+\frac {3 i \operatorname {dilog}\left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \operatorname {dilog}\left (1-\frac {i c}{x}\right )}{2}-\frac {3 i \left (\ln \left (\frac {c}{x}-i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}-i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )-\ln \left (\frac {c}{x}-i\right ) \ln \left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )\right )}{4}+\frac {3 i \left (\ln \left (\frac {c}{x}+i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}+i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )-\ln \left (\frac {c}{x}+i\right ) \ln \left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )\right )}{4}\right )+3 a \,b^{2} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{2}}{2 c^{2}}-\frac {\arctan \left (\frac {c}{x}\right )^{2}}{2}-\frac {x \arctan \left (\frac {c}{x}\right )}{c}-\frac {\ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\ln \left (\frac {c}{x}\right )\right )+3 a^{2} b \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )}{2 c^{2}}-\frac {x}{2 c}-\frac {\arctan \left (\frac {c}{x}\right )}{2}\right )\right )\) \(405\)
default \(-c^{2} \left (-\frac {a^{3} x^{2}}{2 c^{2}}+b^{3} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{3}}{2 c^{2}}-\frac {3 x \arctan \left (\frac {c}{x}\right )^{2}}{2 c}-\frac {\arctan \left (\frac {c}{x}\right )^{3}}{2}+3 \ln \left (\frac {c}{x}\right ) \arctan \left (\frac {c}{x}\right )-\frac {3 \arctan \left (\frac {c}{x}\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1-\frac {i c}{x}\right )}{2}+\frac {3 i \operatorname {dilog}\left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \operatorname {dilog}\left (1-\frac {i c}{x}\right )}{2}-\frac {3 i \left (\ln \left (\frac {c}{x}-i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}-i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )-\ln \left (\frac {c}{x}-i\right ) \ln \left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )\right )}{4}+\frac {3 i \left (\ln \left (\frac {c}{x}+i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}+i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )-\ln \left (\frac {c}{x}+i\right ) \ln \left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )\right )}{4}\right )+3 a \,b^{2} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{2}}{2 c^{2}}-\frac {\arctan \left (\frac {c}{x}\right )^{2}}{2}-\frac {x \arctan \left (\frac {c}{x}\right )}{c}-\frac {\ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\ln \left (\frac {c}{x}\right )\right )+3 a^{2} b \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )}{2 c^{2}}-\frac {x}{2 c}-\frac {\arctan \left (\frac {c}{x}\right )}{2}\right )\right )\) \(405\)
parts \(\frac {a^{3} x^{2}}{2}-b^{3} c^{2} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{3}}{2 c^{2}}-\frac {3 x \arctan \left (\frac {c}{x}\right )^{2}}{2 c}-\frac {\arctan \left (\frac {c}{x}\right )^{3}}{2}+3 \ln \left (\frac {c}{x}\right ) \arctan \left (\frac {c}{x}\right )-\frac {3 \arctan \left (\frac {c}{x}\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \ln \left (\frac {c}{x}\right ) \ln \left (1-\frac {i c}{x}\right )}{2}+\frac {3 i \operatorname {dilog}\left (1+\frac {i c}{x}\right )}{2}-\frac {3 i \operatorname {dilog}\left (1-\frac {i c}{x}\right )}{2}-\frac {3 i \left (\ln \left (\frac {c}{x}-i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}-i\right )^{2}}{2}-\operatorname {dilog}\left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )-\ln \left (\frac {c}{x}-i\right ) \ln \left (-\frac {i \left (\frac {c}{x}+i\right )}{2}\right )\right )}{4}+\frac {3 i \left (\ln \left (\frac {c}{x}+i\right ) \ln \left (1+\frac {c^{2}}{x^{2}}\right )-\frac {\ln \left (\frac {c}{x}+i\right )^{2}}{2}-\operatorname {dilog}\left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )-\ln \left (\frac {c}{x}+i\right ) \ln \left (\frac {i \left (\frac {c}{x}-i\right )}{2}\right )\right )}{4}\right )-3 a \,b^{2} c^{2} \left (-\frac {x^{2} \arctan \left (\frac {c}{x}\right )^{2}}{2 c^{2}}-\frac {\arctan \left (\frac {c}{x}\right )^{2}}{2}-\frac {x \arctan \left (\frac {c}{x}\right )}{c}-\frac {\ln \left (1+\frac {c^{2}}{x^{2}}\right )}{2}+\ln \left (\frac {c}{x}\right )\right )+\frac {3 x^{2} a^{2} b \arctan \left (\frac {c}{x}\right )}{2}-\frac {3 a^{2} b \,c^{2} \arctan \left (\frac {x}{c}\right )}{2}+\frac {3 a^{2} b c x}{2}\) \(407\)
risch \(\text {Expression too large to display}\) \(233342\)

[In]

int(x*(a+b*arctan(c/x))^3,x,method=_RETURNVERBOSE)

[Out]

-c^2*(-1/2*a^3/c^2*x^2+b^3*(-1/2/c^2*x^2*arctan(c/x)^3-3/2/c*x*arctan(c/x)^2-1/2*arctan(c/x)^3+3*ln(c/x)*arcta
n(c/x)-3/2*arctan(c/x)*ln(1+c^2/x^2)+3/2*I*ln(c/x)*ln(1+I*c/x)-3/2*I*ln(c/x)*ln(1-I*c/x)+3/2*I*dilog(1+I*c/x)-
3/2*I*dilog(1-I*c/x)-3/4*I*(ln(c/x-I)*ln(1+c^2/x^2)-1/2*ln(c/x-I)^2-dilog(-1/2*I*(c/x+I))-ln(c/x-I)*ln(-1/2*I*
(c/x+I)))+3/4*I*(ln(c/x+I)*ln(1+c^2/x^2)-1/2*ln(c/x+I)^2-dilog(1/2*I*(c/x-I))-ln(c/x+I)*ln(1/2*I*(c/x-I))))+3*
a*b^2*(-1/2/c^2*x^2*arctan(c/x)^2-1/2*arctan(c/x)^2-1/c*x*arctan(c/x)-1/2*ln(1+c^2/x^2)+ln(c/x))+3*a^2*b*(-1/2
/c^2*x^2*arctan(c/x)-1/2*x/c-1/2*arctan(c/x)))

Fricas [F]

\[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\int { {\left (b \arctan \left (\frac {c}{x}\right ) + a\right )}^{3} x \,d x } \]

[In]

integrate(x*(a+b*arctan(c/x))^3,x, algorithm="fricas")

[Out]

integral(b^3*x*arctan(c/x)^3 + 3*a*b^2*x*arctan(c/x)^2 + 3*a^2*b*x*arctan(c/x) + a^3*x, x)

Sympy [F]

\[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\int x \left (a + b \operatorname {atan}{\left (\frac {c}{x} \right )}\right )^{3}\, dx \]

[In]

integrate(x*(a+b*atan(c/x))**3,x)

[Out]

Integral(x*(a + b*atan(c/x))**3, x)

Maxima [F]

\[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\int { {\left (b \arctan \left (\frac {c}{x}\right ) + a\right )}^{3} x \,d x } \]

[In]

integrate(x*(a+b*arctan(c/x))^3,x, algorithm="maxima")

[Out]

3/2*a*b^2*x^2*arctan(c/x)^2 + 1/2*a^3*x^2 + 3/2*(x^2*arctan(c/x) - (c*arctan(x/c) - x)*c)*a^2*b - 3/2*((arctan
(x/c)^2 - log(c^2 + x^2))*c^2 + 2*(c*arctan(x/c) - x)*c*arctan(c/x))*a*b^2 + 1/32*(12*c^2*arctan(c/x)^2*arctan
(x/c) + 8*c^2*arctan2(c, x)^3 + 8*x^2*arctan2(c, x)^3 + 4*(3*arctan(c/x)*arctan(x/c)^2/c + arctan(x/c)^3/c)*c^
3 + 12*c*x*arctan2(c, x)^2 + 96*c^3*integrate(1/32*log(c^2 + x^2)^2/(c^2 + x^2), x) - 3*c*x*log(c^2 + x^2)^2 +
 512*c^2*integrate(1/32*x*arctan(c/x)^3/(c^2 + x^2), x) + 768*c^2*integrate(1/32*x*arctan(c/x)/(c^2 + x^2), x)
 + 384*c*integrate(1/32*x^2*arctan(c/x)^2/(c^2 + x^2), x) + 96*c*integrate(1/32*x^2*log(c^2 + x^2)^2/(c^2 + x^
2), x) + 384*c*integrate(1/32*x^2*log(c^2 + x^2)/(c^2 + x^2), x) + 512*integrate(1/32*x^3*arctan(c/x)^3/(c^2 +
 x^2), x))*b^3

Giac [F]

\[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\int { {\left (b \arctan \left (\frac {c}{x}\right ) + a\right )}^{3} x \,d x } \]

[In]

integrate(x*(a+b*arctan(c/x))^3,x, algorithm="giac")

[Out]

integrate((b*arctan(c/x) + a)^3*x, x)

Mupad [F(-1)]

Timed out. \[ \int x \left (a+b \arctan \left (\frac {c}{x}\right )\right )^3 \, dx=\int x\,{\left (a+b\,\mathrm {atan}\left (\frac {c}{x}\right )\right )}^3 \,d x \]

[In]

int(x*(a + b*atan(c/x))^3,x)

[Out]

int(x*(a + b*atan(c/x))^3, x)